Extracting Molecular Binding Relationships from Biomedical Text

نویسندگان

  • Thomas C. Rindflesch
  • Jayant V. Rajan
  • Lawrence Hunter
چکیده

ARBITER is a Prolog program that extracts assertions about macromolecular binding relationships from biomedical text. We describe the domain knowledge and the underspecified linguistic analyses that support the identification of these predications. After discussing a formal evaluation of ARBITER, we report on its application to 491,000 MEDLINE ~ abstracts, during which almost 25,000 binding relationships suitable for entry into a database of macromolecular function were extracted.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning the Structure of Biomedical Relationships from Unstructured Text

The published biomedical research literature encompasses most of our understanding of how drugs interact with gene products to produce physiological responses (phenotypes). Unfortunately, this information is distributed throughout the unstructured text of over 23 million articles. The creation of structured resources that catalog the relationships between drugs and genes would accelerate the tr...

متن کامل

Mining molecular binding terminology from biomedical text

Automatic access to information regarding macromolecular binding relationships would provide a valuable resource to the biomedical community. We report on a pilot project to mine such information from the molecular biology literature. The program being developed takes advantage of natural language processing techniques and is supported by two repositories of biomolecular knowledge. A formative ...

متن کامل

A Framework for Schema-Driven Relationship Discovery from Unstructured Text

We address the issue of extracting implicit and explicit relationships between entities in biomedical text. We argue that entities seldom occur in text in their simple form and that relationships in text relate the modified, complex forms of entities with each other. We present a rule-based method for (1) extraction of such complex entities and (2) relationships between them and (3) the convers...

متن کامل

Subsequence Kernels for Relation Extraction

We present a new kernel method for extracting semantic relations between entities in natural language text, based on a generalization of subsequence kernels. This kernel uses three types of subsequence patterns that are typically employed in natural language to assert relationships between two entities. Experiments on extracting protein interactions from biomedical corpora and top-level relatio...

متن کامل

Parts-of-Speech Tagger Errors Do Not Necessarily Degrade Accuracy in Extracting Information from Biomedical Text

Background: An ongoing assessment of the literature is difficult with the rapidly increasing volume of research publications and limited effective information extraction tools which identify entity relationships from text. A recent study reported development of Muscorian, a generic text processing tool for extracting proteinprotein interactions from text that achieved comparable performance to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000